The Hard Stuff! All About Bones

A Reading A–Z Level U Leveled Reader
Word Count: 1,691

The Hard Stuff! All About Bones

Written by Lisa Trumbauer

Visit www.readinga-z.com for thousands of books and materials.
The Hard Stuff! All About Bones

Written by Lisa Trumbauer

www.readinga-z.com

Photo Credits:
Front cover: © iStockphoto.com/Sebastian Kaulitzki; back cover: © Michal Heron Photography; title page: © iStockphoto.com/Peter Galbraith; pages 4 (all), 6, 8a (head), 10, 12 (all), 13 (all), 14a (bones art), 14b (kids), 15, 17b (bones art), 18, 19b (hip joint diagram), 22: © Jupiterimages Corporation; page 5 (all): © MedicalRF.com/Corbis; page 7: © Oguz Aral/123RF; page 8b (skull): © Derrick Neill/Dreamstime.com; page 8c (art of ear): © Cende Hill; page 9: © iStockphoto.com/Zsolt Biczo; page 11: © iStockphoto.com/Join King; pages 14 (arm photo), 17b (leg photo): © Craig Frederick/Learning A-Z; page 16: © iStockphoto.com/Mads Abilgaard; page 17a (girl): © iStockphoto.com/Michael Krinke; page 19a (X-ray): © Sebastian Kaulitzki/BigStockPhotos.com; page 20: © Gunilla Elam/SPL/PhotoResearchers, Inc; page 21: © Stacy Barnett/123RF; page 24: © iStockphoto.com/Linda Bucklin

Correlation

<table>
<thead>
<tr>
<th>LEVEL U</th>
<th>Fountas & Pinnell</th>
<th>Reading Recovery</th>
<th>DRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>Q</td>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>
Lizards have one. Elephants have one. Even fish have one. You have one, too! What do you all have? You all have skeletons.

Skeletons are the bones inside animals’ bodies. The skeleton is a frame that has muscles, blood vessels, and skin wrapped around it. Skeletons give vertebrates—humans and many other animals—their shape. You can identify many animals just by looking at their skeletons.
The human skeleton is made up of 206 bones, starting at the top with the skull and ending at the bottom with the toe bones. Many bones have muscles attached to them by tendons. These bones help us move. Some bones protect soft organs inside our bodies, such as the heart and the brain. Many large bones have special areas in the center that make blood cells. Tissues called ligaments connect the bones to make up the skeleton.

To learn how bones work, let’s take a closer look at specific body areas.

Heads Up

Press your hand against your forehead—the part of your face above your eyebrows. Your forehead feels hard because you can feel your skull, or cranium, under the skin. The cranium is one set of bones in your body. It protects your brain, a very important and very soft organ. The cranium is like a crash helmet, except that it is not as strong. For that reason, you need to wear a helmet when you play some sports.
If you feel around your head, your skull seems to be one piece. Actually, though, the skull is made up of many different bones. The bones come together at special joints called **sutures**. Unlike other joints, sutures don’t move much.

Remember touching your forehead? This part of the skull is the **frontal bone**. The ridge of bone above your eyes is the **supraorbital ridge**. The largest part of your skull covers the top and back of your head. These two bones are the **parietal** (puh-RY-eh-tul) **bones**. The part of your skull just above your neck in the back is the **occipital** (awk-SIP-ihtul) **bone**, and the sides of the skull, above the ears, are the **temporal bones**.

In all, your skull has twenty-two bones, not counting the six in your middle ears and one in your throat. Under your cheeks, you can feel your cheekbones, or **zygomatic bones**. Your jaw is made up of two bones—the upper jaw, or **maxilla**, and the lower jaw, or **mandible**. The lower jaw is one of the few bones in your skull that can move on its own.

Bones Bonus

Your ears also have bones—the hammer, anvil, and stirrup, which are attached to the eardrum. These bones are the tiniest bones in your body. When the eardrum picks up sounds and vibrates, the eardrum moves the hammer. The hammer then vibrates, which makes the anvil vibrate, which in turn pushes the stirrup. Nerves detect these vibrations and send them to the brain, which makes meaning of the sounds.
If you look at a skeleton, you might see something missing from its face—a nose. The part of your nose that sticks out is not made of bone but rather of a tissue called cartilage (CAR-tih-ledj). Touch your nose and move it around. Cartilage, unlike your bones, can bend. Cartilage, which is also found at the ends of bones, keeps them from rubbing together.

Skeletons also have teeth, but teeth are not bones. Teeth are harder than bones. The outside of a tooth is made of a substance called enamel. Enamel is the hardest substance in the body.

Put Your Back Into It

The skull connects to the backbone, also called the spinal column. You can feel the first few parts of the spinal column along the back of your neck. The ridges of the spinal column continue down your back, all the way to your hips. These ridges, called vertebrae (VER-teh-bray), are the individual bones of your backbone.

The backbone has thirty-three vertebrae. Seven vertebrae—the cervical vertebrae—are in the neck. Twelve vertebrae run from the top of your back to about the middle of your back. They are the thoracic (thor-AH-sik) vertebrae. Five lumbar vertebrae are at the back of your waist, followed by five fused sacral vertebrae, which sit between your hips. The remaining vertebrae form the coccyx (KOK-siks) at the bottom of your spinal column.

Bones Bonus

The top two vertebrae are the atlas and axis. These two vertebrae allow you to nod and shake your head.
Your spinal column has two important jobs. First, it protects the soft **spinal cord**, which runs through the vertebrae. The spinal cord is the place where all the nerves in your body meet to send information to your brain.

The spinal column also allows you to bend, twist, roll, and flip. Because the backbone is a chain of bones instead of one solid bone, it is very flexible and can move in many directions.

The skull is not the only set of bones attached to the backbone; the ribs and pelvic bones are attached to it, too.

Along with giving shape to your chest, the ribs protect the lungs and heart. If you bang your chest, your lungs and heart don’t get squashed because the ribs provide a sturdy wall around them. Your rib cage has twelve bones on each side, each of which is connected to one of the twelve thoracic vertebrae.
Near the top end of the spinal column, you will also find a **scapula** and **clavicle** on each side. *Scapula* is the technical term for the shoulder blade, and **clavicle** is the technical term for the collarbone. The scapula and the clavicle make up the shoulder.

Near the bottom of the spinal column, two hip bones form the **pelvis**. On each side, a pelvic bone looks like a shallow dish or bowl. That’s because it holds your intestines and other lower-body organs.

Boning Up

The skeleton of a newborn baby is not the same as the skeleton of an adult. An unborn baby has cartilage instead of bones. As the unborn baby grows and develops, the cartilage hardens and turns to bone. By the time the baby is born, most of the cartilage has become bone. As babies become children and then adults, their bones continue to harden or even join together. One of the last sets of bones to join together is the group that makes up the pelvis. These bones become one solid structure when a person is in his or her late teens or early twenties.

And Now the Appendages

Your arms and hands, legs and feet—your **appendages**—allow you to perform different activities. Your arms and hands allow you to lift and hold things, while your legs and feet help you to move around. These actions are possible in part because of the bones inside your appendages.

Your arms each contain three bones—the **humerus**, the **radius**, and the **ulna**. The humerus is the upper-arm bone, attached at the top to the shoulder. The radius and the ulna make up the lower part of the arm, between the elbow and wrist.

These kids use their arms to help hold themselves up.
Your wrist and hand together have more bones than any other part of your body—twenty-seven! That’s a total of fifty-four bones for both hands. Because wrists and hands have so many bones, they are very flexible and precise, allowing us to do complex activities such as writing, drawing, playing the piano, and tying shoelaces.

Many for Manipulating

Your fingers may be smaller than your arms, but they have more bones. Here’s how the number of bones in each part of your arms and hands compare.

Arm: 3 bones
Wrist: 8 carpals
Palm: 5 metacarpals
Each finger: 3 phalanges (fuh-LAN-jeez)
Each thumb: 2 phalanges
Fingers and thumbs: 14 phalanges total

The bones of the legs and feet are similar to the bones of the arms and hands. The top portion of the leg is one solid bone, called the thighbone, or femur. The bottom part of the leg has two bones—the shinbone, or tibia, and the fibula. Between the upper and lower parts of the leg is one more bone—the kneecap, or patella. The kneecap lies over the knee joint, protecting the tendons beneath it that allow the leg to bend.

Bones Bonus

The longest, strongest, and largest bone in your body is in your leg. It’s the thighbone, or femur. The femur extends from the pelvis to the knee. To break the femur requires a large amount of force. For example, you would have to fall from a great height or have a high-speed collision while skiing or skating.
Like the hand, the foot is a complex collection of many bones. Each foot has only one less bone than a hand—twenty-six—for a total of fifty-two bones for both feet. The ankle and heel of a foot have seven *tarsal* bones, and the ball of a foot has five *metatarsal* bones. Like the hand, the foot has fourteen *phalanges*—two for the big toe and three each for the remaining toes. Skin and tissue on the bottoms, or soles, of the feet protect the bones from the impact of jumping and running.

Foot bones are cushioned by the skin and tissue around them so they don’t break when you run, jump, and hop.

Your joints allow you to bend and twist into unusual positions.

Don’t Get Out of Joint

Along with 206 bones, the adult human body has over 100 joints. Joints are the places where bones meet. Bones are hard and unbending, but because bones are connected at joints, our bodies can bend and twist.

Bones Bonus

Sometimes we say that people are double-jointed, which doesn’t mean that they have two joints instead of one. Double-jointed people are more flexible than the average person because the ligaments between their joints are looser. These loose ligaments allow them to bend in unusual ways.
Not all joints are the same. The joint where the humerus connects to the shoulder bone is a **ball-and-socket joint**. The connection between the femur and the pelvis is another joint of this type. The top end of the humerus has a ball shape. This ball fits snugly into a round socket in the shoulder. The same is true for the femur, which fits into the pelvis.

The elbow joint and the knee joint are **hinge joints**. Hinge joints can only bend in one direction. The joints between the vertebrae of your spine are **swivel joints**, which tilt and turn. Sutures connect the skull bones but do not allow much movement.

Inside Your Bones

It might seem as if bones are hard and dead, like rocks, but that is not the case. Bones are alive with millions of bone cells that need oxygen and food to survive, just like other types of cells.

On the outside, a bone is hard and solid. This outer layer is the **compact bone**. Below the compact bone is the **spongy bone**, which has holes to keep the bones light so our muscles can lift them.

Inside the spongy bone is **bone marrow**. Bone marrow is the place where the body makes blood cells. The bone marrow in a typical adult produces more than 50 billion red blood cells every day!
Keeping Bones Healthy

Even though bones are very strong, they can break if they are hit hard enough. Healing a broken bone requires a little help from a doctor and a great deal of help from bone cells.

For a bone to heal correctly, the bone must be put back the way it was before the break. Doctors may need to move around the broken bones to put them back together. Then they place a cast around the body part where the bone was broken. The cast keeps the body part from moving so the bone has time to heal. As soon as a bone breaks, bone cells begin repairing it. Holding the broken bone in place with a cast allows the bone cells to do their job.

Bones need to stay healthy to remain strong. Exercising regularly is the best way to keep your bones in good working order. Eating a well-balanced diet helps the bone marrow to produce healthy blood cells. **Legumes** (such as pinto beans or peas), other vegetables, and fruits are good for your bones. Foods rich in calcium, such as dairy products and fortified soy milk, rice milk, and orange juice, can also help bones to grow.

Your bones give your body its shape, and they also give you much more. They give you the ability to move, sit, stand, and write. You wouldn’t be you without your bones!
Glossary

appendages (n.) arms and legs (p. 14)
ball-and-socket joint (n.) a joint that fits together as a ball fits into a glove (p. 19)
bone marrow (n.) material in large bones that creates blood cells (p. 20)
cartilage (n.) a tough, rubbery substance found at the ends of bones and in the nose (p. 9)
fused (adj.) joined together (p.10)
hinge joints (n.) joints that open like a door (p. 19)
legumes (n.) a family of vegetables that includes beans and peas (p. 22)
ligaments (n.) tissues that connect one bone to another bone (p. 5)
precise (adj.) exact in movement or operation (p. 15)
spinal cord (n.) a collection of nerves protected by vertebrae (p. 11)
sutures (n.) joints, or seams, between skull bones (p. 7)

swivel joints (n.) joints that can tilt or turn (p. 19)
tendons (n.) tissues that attach muscles to bones (p. 5)
vertebrates (n.) animals with backbones (p. 4)